Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134224, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583198

RESUMO

This study employs a combination of bibliometric and epidemiological methodologies to investigate the relationship between metal exposure and glucose homeostasis. The bibliometric analysis quantitatively assessed this field, focusing on study design, predominant metals, analytical techniques, and citation trends. Furthermore, we analyzed cross-sectional data from Beijing, examining the associations between 14 blood metals and 6 glucose homeostasis markers using generalized linear models (GLM). Key metals were identified using LASSO-PIPs criteria, and Bayesian kernel machine regression (BKMR) was applied to assess metal mixtures, introducing an "Overall Positive/Negative Effect" concept for deeper analysis. Our findings reveal an increasing research interest, particularly in selenium, zinc, cadmium, lead, and manganese. Urine (27.6%), serum (19.0%), and whole blood (19.0%) were the primary sample types, with cross-sectional studies (49.5%) as the dominant design. Epidemiologically, significant associations were found between 9 metals-cobalt, copper, lithium, manganese, nickel, lead, selenium, vanadium, zinc-and glucose homeostasis. Notably, positive-metal mixtures exhibited a significant overall positive effect on insulin levels, and notable interactions involving nickel were identified. These finding not only map the knowledge landscape of research in this domain but also introduces a novel perspective on the analysis strategies for metal mixtures.


Assuntos
Bibliometria , Glicemia , Homeostase , Humanos , Glicemia/análise , Metais/análise , Estudos Transversais , Estudos Epidemiológicos , Teorema de Bayes
2.
Chin Med Sci J ; 39(1): 69-73, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38449318

RESUMO

This data article describes the "Typical Regional Activity Patterns" (TRAP) dataset, which is based on the Tackling Key Problems in Air Pollution Control Program. In order to explore the interaction between air pollution and physical activity, we collected activity patterns of 9,221 residents with different occupations and lifestyles for three consecutive days in typical regions (Jinan and Baoding) where air pollutant concentrations were higher than those in neighboring areas. The TRAP dataset consists of two aspects of information: demographic indicators (personal information, occupation, personal habits, and living situation) and physical activity pattern data (activity location and intensity); additionally, the exposure measures of physical activity patterns are included, which data users can match to various endpoints for their specific purpose. This dataset provides evidence for exploring the attributes of activity patterns of residents in northern China and for interdisciplinary researchers to develop strategies and measures for health education and health promotion.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Estações do Ano , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China/epidemiologia
3.
Chem Commun (Camb) ; 60(21): 2887-2897, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38375827

RESUMO

It is of great significance to develop environmentally benign, non-volatile and recyclable green solvents for different applications. This feature article overviews the properties of green solvent systems (e.g., ionic liquids, supercritical carbon dioxide, deep eutectic solvents and mixed green solvent systems) and their applications in (1) framework material syntheses, including metal-organic frameworks, covalent organic frameworks and hydrogen-bonded organic frameworks, and (2) CO2 conversion reactions, including photocatalytic and electrocatalytic reduction reactions. Finally, the future perspective for research on green solvent systems is proposed from different aspects.

4.
Front Immunol ; 14: 1259521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954611

RESUMO

Tuft cells are a type of rare epithelial cells that have been recently found to utilize taste signal transduction pathways to detect and respond to various noxious stimuli and pathogens, including allergens, bacteria, protists and parasitic helminths. It is, however, not fully understood how many different types of pathogens they can sense or what exact molecular mechanisms they employ to initiate targeted responses. In this study, we found that an anaerobic pathobiont microbe, Ruminococcus gnavus (R. gnavus), can induce tuft cell proliferation in the proximal colon whereas the microbe's lysate can stimulate these proximal colonic tuft cells to release interleukin-25 (IL-25). Nullification of the Gng13 and Trpm5 genes that encode the G protein subunit Gγ13 and transient receptor potential ion channel Trpm5, respectively, or application of the Tas2r inhibitor allyl isothiocyanate (AITC), G protein Gßγ subunit inhibitor Gallein or the phospholipase Cß2 (PLCß2) inhibitor U73122 reduces R. gnavus-elicited tuft cell proliferation or IL-25 release or both. Furthermore, Gng13 conditional knockout or Trpm5 knockout diminishes the expression of gasdermins C2, C3 and C4, and concomitantly increases the activated forms of caspases 3, 8 and 9 as well as the number of TUNEL-positive apoptotic cells in the proximal colon. Together, our data suggest that taste signal transduction pathways are not only involved in the detection of R. gnavus infection, but also contribute to helping maintain gasdermin expression and prevent apoptotic cell death in the proximal colon, and these findings provide another strategy to combat R. gnavus infection and sheds light on new roles of taste signaling proteins along with gasdermins in protecting the integrity of the proximal colonic epithelium.


Assuntos
Paladar , Canais de Potencial de Receptor Transitório , Ruminococcus , Transdução de Sinais , Colo
5.
J Am Chem Soc ; 145(40): 21983-21990, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783450

RESUMO

Electrochemical reduction of CO2 to multicarbon (C2+) products using renewable energy sources is an important route to storing sustainable energy and achieving carbon neutrality. It remains a challenge to achieve high C2+ product faraday efficiency (FE) at ampere-level current densities. Herein, we propose the immobilization of an alkaline ionic liquid on copper for promoting the deep reduction of CO2. By this strategy, a C2+ FE of 81.4% can be achieved under a current density of 0.9 A·cm-2 with a half-cell energy conversion efficiency of 47.4% at -0.76 V vs reversible hydrogen electrode (RHE). Particularly, when the current density is as high as 1.8 A·cm-2, the C2+ FE reaches 71.6% at an applied potential of -1.31 V vs RHE. Mechanistic studies demonstrate that the alkaline ionic liquid plays multiple roles of improving the accumulation of CO2 molecules on the copper surface, promoting the activation of the adsorbed CO2, reducing the energy barrier of CO dimerization, stabilizing intermediates, and facilitating the C2+ product formation.

6.
Chem Commun (Camb) ; 59(17): 2445-2448, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36734610

RESUMO

We demonstrate the electrochemical conversion of carbon dioxide into multi-carbon products catalyzed by Cu/Cu2O nanocrystals, with a maximum C2+ faradaic efficiency of 75% in 0.10 M K2SO4 aqueous solution at -2.0 V versus Ag/AgCl and a partial current density of 34 mA cm-2.

7.
Front Plant Sci ; 13: 1050104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507415

RESUMO

Arbuscular mycorrhizal fungi (AMF) widely exist in the soil ecosystem. It has been confirmed that AMF can affect the root exudates of the host, but the chain reaction effect of changes in the root exudates has not been reported much. The change of soil microorganisms and soil enzyme vigor is a direct response to the change in the soil environment. Root exudates are an important carbon source for soil microorganisms. AMF colonization affects root exudates, which is bound to have a certain impact on soil microorganisms. This manuscript measured and analyzed the changes in root exudates and allelopathic effects of root exudates of maize after AMF colonization, as well as the enzymatic vigor and bacterial diversity of maize rhizosphere soil. The results showed that after AMF colonization, the contents of 35 compounds in maize root exudates were significantly different. The root exudates of maize can inhibit the seed germination and seedling growth of recipient plants, and AMF colonization can alleviate this situation. After AMF colonization, the comprehensive allelopathy indexes of maize root exudates on the growth of radish, cucumber, lettuce, pepper, and ryegrass seedlings decreased by 60.99%, 70.19%, 80.83%, 36.26% and 57.15% respectively. The root exudates of maize inhibited the growth of the mycelia of the pathogens of soil-borne diseases, and AMF colonization can strengthen this situation. After AMF colonization, the activities of dehydrogenase, sucrase, cellulase, polyphenol oxidase and neutral protein in maize rhizosphere soil increased significantly, while the bacterial diversity decreased but the bacterial abundance increased. This research can provide a theoretical basis for AMF to improve the stubble of maize and the intercropping mode between maize and other plants, and can also provide a reference for AMF to prevent soil-borne diseases in maize.

8.
Chem Asian J ; 17(24): e202200893, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36214199

RESUMO

The electrocatalytic carbon dioxide (CO2 ) conversion to ethylene (C2 H4 ) has attracted significant attention in recent years. Copper-based catalytic systems have been proven to be the most efficient for producing C2 H4 from electrocatalytic CO2 reduction reaction. In this review, we present the recent progress on the electrocatalytic CO2 reduction to C2 H4 over copper-based catalytic systems, mainly focusing on reaction mechanism, design of catalysts and influences of electrolyte, CO2 supplement and electrolyzer on activity, selectivity and stability.

9.
Ecotoxicol Environ Saf ; 247: 114217, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306613

RESUMO

Excessively high concentrations of selenium (Se) in soil are toxic to crop plants, and inoculation with arbuscular mycorrhizal fungi (AMF) can reverse Se stress in maize (Zea mays L.). To investigate the underlying mechanisms, maize seedlings were treated with sodium selenate (5 mg Se[VI] kg-1) and/or AMF (Funneliformis mosseae and Claroideoglomus etunicatum). Dual RNA sequencing in mycorrhiza and 16 S ribosomal DNA sequencing in soil were performed. The results showed that Se(VI) application alone decreased plant dry weight, but increased plant Se concentration, total Se content (mainly selenocysteine), and root superoxide content. Inoculation with either F. mosseae or C. etunicatum increased plant dry weight, decreased Se accumulation and selenocysteine proportion, enhanced root peroxidase activity, and alleviated oxidative stress in Se(VI)-treated plants. Inoculation also downregulated the expression of genes encoding Se transporters, assimilation enzymes, and cysteine-rich receptor-like kinases in Se(VI)-stressed plants, similar to plant-pathogen interaction and glutathione metabolism related genes. Conversely, genes encoding selenium-binding proteins and those related to phenylpropanoid biosynthesis were upregulated in inoculated plants under Se(VI) stress. Compared with Se(VI)-free plants, Se tolerance index, symbiotic feedback percentage on plant dry weight, and root colonization rate were all increased in inoculated plants under Se(VI) stress, corresponding to upregulated expression of 'key genes' in symbiosis. AMF inoculation increased bacterial diversity, decreased the relative abundances of selenobacteria related to plant Se absorption (e.g., Proteobacteria and Firmicutes), and improved bacterial network complexity in Se(VI)-stressed soils. We suggest that stress-mediated enhancement of mycorrhizal symbiosis contributed to plant Se(VI) tolerance, whereas AMF-mediated reshaping of soil bacterial community structure prevented excessive Se accumulation in maize.


Assuntos
Microbiota , Micorrizas , Selênio , Micorrizas/química , Zea mays/metabolismo , Solo/química , Ácido Selênico/metabolismo , DNA Ribossômico , RNA/metabolismo , Selenocisteína/metabolismo , Raízes de Plantas/metabolismo , Microbiota/genética , Plantas , Selênio/metabolismo , Análise de Sequência de DNA
10.
BMC Plant Biol ; 22(1): 64, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123400

RESUMO

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) are a group of important symbiotic microorganisms found in ecosystems. Maize is the second most produced food crop globally. To investigate the mechanisms by which mycorrhizal symbiosis improves maize yields, the effects of mycorrhizal symbiosis on root vigor, nutrient accumulation in various tissues, and root exudates were investigated. We propose the following hypothesis: The secretion of organic acids in root exudates has antagonistic or synergistic effects, which are related to the rhizosphere environment. AMF symbiosis will enhance this effect. RESULT: Rhizophagus aggreatus, Claroideoglomus etunicatum, and Funneliformis mosseae were used to inoculate maize plants separately; meanwhile, maize was inoculated with the above three fungi together for another processing. The plant tissues were sampled at five growth stages: V12 (twelve-leaf), VT (Tassel), R1 (Silking), R2 (Blister), and R4 (Dough stage). The root vigor, and nutrient content in different maize organs and organic acids in root exudates were determined in these stages. The results show that mycorrhizal symbiosis significantly improved the root vigor of maize, especially for plants inoculated with F. mosseae. AMF symbiosis significantly increased N, P, and K accumulation. Mixed inoculation with arbuscular mycorrhizal fungi significantly promoted the accumulation of N and K in maize. P accumulation was significantly promoted by C. etunicatum inoculation. Mycorrhizal symbiosis reduced the levels of protocatechuic, vanillic, citric, and ferulic acid in maize root exudates and increased the levels of p-hydroxybenzoic and caffeic acid. Except for syringic, chlorogenic and succinic acid, the levels of other organic acids in root exudates were higher in plants inoculated with F. mosseae than in other treatments. CONCLUSION: This study demonstrates that mycorrhizal symbiosis improves root vigor and promotes nutrient accumulation at various sites; in addition, mycorrhizal symbiosis affects the content of organic acids in root exudates.


Assuntos
Micorrizas/crescimento & desenvolvimento , Exsudatos de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Simbiose/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Raízes de Plantas/microbiologia
11.
Ecotoxicol Environ Saf ; 228: 113000, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34808506

RESUMO

Selenium (Se) is a beneficial trace element for certain animals including humans, while remaining controversial for plants. High Se concentration in soil is toxic to plants especially at seedling stage of the plants. Although, arbuscular mycorrhizal fungi (AMF) are important for plant stress resistance; but the mechanisms by which AMF alleviate Se stress in crop seedlings are unclear. Therefore, we investigated the potential strategies of AMF symbiosis to alleviate Se stress in maize (Zea mays) from plants and soil perspectives. Results showed that Se stress (Se application level > 5 mg kg-1) significantly inhibited leaf area, shoot dry weight, and root dry weight of maize (P < 0.05). In contrast, AM symbiosis significantly improved root morphology, increased nitrogen and phosphorus nutrition, promoted shoot growth, inhibited the transport of Se from soil/roots to shoots, and then diluted the concentration of Se in shoots (32.65-52.80%). In general, the response of maize growth to AMF was mainly observed in shoots rather than roots. In addition, AMF inoculation significantly increased the easily extractable glomalin-related soil protein and organic matter contents and decreased the availability of soil Se to the plant. Principal component analysis showed that AMF promoted growth and nutrition uptake of maize was the most dominant effect of Se stress alleviation, followed by the decrease of soil Se availability, limiting Se transport from soil/roots to shoots. Moreover, the expression of Se uptake-related ion transporter genes (ZmPht2, ZmNIP2;1, and ZmSultr1;3) in maize roots were down-regulated upon AM symbiosis which resultantly inhibited the uptake and transport of Se from soil to maize roots. Thus, AMF could impede Se stress in maize seedlings by improving plant and soil characteristics.

12.
Sci Bull (Beijing) ; 66(8): 839-856, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654140

RESUMO

Carbon dots (CDs) are potentially useful in many areas such as bioimaging, light-emitting diodes, and sensing because of their excellent optical properties, high biocompatibility, and low toxicity. Knowledge of their photoluminescence (PL) mechanisms, which have been widely studied, is of significance in guiding the synthesis and promoting applications of CDs with tunable PL emissions. However, the intrinsic mechanism of PL emission remains unclear, and a unified mechanism has not been found because of differences in particle structures. This review generalizes the categories of CDs, noting their structural diversity. Three types of PL mechanism pertaining to structural differences are outlined: internal factors dominated emission (including the conjugation effect, the surface state, and the synergistic effect), external factors dominated emission (including the molecular state and the environment effect), and crosslink-enhanced emission. Optical applications of CDs are also briefly mentioned. Finally, the prospects for research into PL mechanisms are discussed, noting the remaining challenges and directions for future work.

13.
Dalton Trans ; 49(23): 7952-7958, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32496494

RESUMO

In this paper, two energy-transfer photochromic metal-organic frameworks (MOFs) {[Zn(L)0.5(bpy)]·H2O·DMF}n (1) and {[Zn(L)0.5(bpe)]·2H2O·DMF}n (2) (H4L = 9,9'-(1,4-phenylenebis(methylene))bis(9H-carbazole-3,6-dicarboxylic acid), bpy = 4,4'-bipyridine, bpe = 4,4'-vinylenedipyridine) were designed and synthesized. Both 1 and 2 showed similar pillared-paddle wheel type frameworks with bpy and bpe as the chromophore, respectively, and L4- as the antenna-type light harvester, yielding strut-to-strut energy transfer (antenna behavior) within the well-ordered structures. Among them, 1 displayed excellent energy-transfer photochromic behavior under UV light accompanied by color transformation from colorless to purple. In addition, the photochromic behavior of 1 has obvious, fast, controllable and reversible characteristics. On the other hand, 2 showed a different energy-transfer photochromic behavior in the aspects of color changing, gamut, and sensitivity. The variation has been ascribed to the substitution of chromophore bpy in 1 with bpe in 2, which influences the efficiency of energy transfer within the MOFs. Therefore, with the structural diversity and tunability of MOFs, the sensitivity, color, and gamut of energy-transfer of the photochromic MOFs can be tuned by the appropriate choice of the constitutions of MOFs. This work will provide useful guidance for developing novel energy-transfer photochromic MOF materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...